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Abstract
Despite the typical human notion that the Earth is a habitable planet, over
three quarters of our planet is uninhabitable by us without assistance. The
organisms that live and thrive in these “inhospitable” environments are
known by the name extremophiles and are found in all Domains of Life.
Despite our general lack of knowledge about them, they have already
assisted humans in many ways and still have much more to give. In this
review, I describe how they have adapted to live/thrive/survive in their
niches, helped scientists unlock major scientific discoveries, advance the
field of biotechnology, and inform us about the boundaries of Life and
where we might find it in the Universe.
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Introduction
As human beings, we tend to look at the world from our perspec-
tive and in turn the conditions under which our species thrives 
as “normal” and “typical” for the planet Earth; however, this is 
quite far from the truth. When looked at as a whole, the Earth is  
actually quite a cold place since 90% of the world’s oceans are 
not more than 5 °C1. When the polar and alpine regions are fac-
tored in, cold environments account for roughly three quarters 
of the planet Earth. Therefore, in regard to extremophiles, it is 
important to understand that they are “extreme” only because they 
are found in regions where human beings typically cannot live  
unassisted. It is also important to think of them as growing and 
thriving in these conditions and not merely eking out an exist-
ence as the “last organism standing” that was able to survive  
just a bit longer than the rest. After all, they have evolved a set 
of adaptations that have made these “extreme” environments their 
preferred niche.

All three Domains of Life are represented in all of Earth’s extreme 
environments. However, a vast majority are prokaryotes, as they 
are the most numerous organisms on the planet, so it should 
come as no surprise that they have been isolated or detected  
literally all over the Earth. Just looking at the known limits of  
growth — minus 12 °C (Psychromoas ingrahamii) to 129 °C 
(Geogemma barossii), pH of less than 0 (Picrophilus torridus) 
to 13 (Plectonema nostocorum and Hydrogenophaga sp.), pres-
sures of more than 100 Mpa (Shewanella benthica), beyond sat-
urating conditions of NaCl and KCl (Haloferax volcanii), and  
high levels of ultraviolet (UV) (>100 J/m2) and gamma (>12 kGy) 
radiation (Halobacterium sp. NRC-1 and Deinococcus radio-
durans)2–8—should more than confirm this. In addition to these 
gradients, viable microbes have been found from the mesosphere 
(48 to 77 km above the Earth’s surface)9 to the Mariana Trench/
Challenger Deep (11 km below the ocean surface)6 to several  
kilometers below the Earth’s surface (for example, the South  
African gold mines)10.

In the following review, I will catalog the adaptations that the 
organisms that live in these environments have evolved to per-
sist and thrive. I will also describe a few major contributions  
made to the body of scientific knowledge that were made by using 
these organisms as model systems. I will finish by discussing two 
topics most often associated with extremophiles: biotechnology 
applications and astrobiology.

Adaptations to environmental conditions
pH: acidophiles
With few exceptions, these organisms maintain a cellular pH near 
neutral, which requires maintaining a pH gradient that is sev-
eral orders of magnitude different on either side of the plasma 
membrane11. One benefit of this is that there is always a ready  
supply of protons to power the proton motive force and form 
adenosine triphosphate (ATP) via the electron transport chain.  
However, the flip side is that the unusually high differences in  
concentration of protons (compared with neutrophiles) mean that, 
if left unchecked, the incoming protons have a greater capac-
ity to dramatically change the internal cellular pH, which would  
lead to cell death.

To counteract these conditions, acidophiles have evolved sev-
eral mechanisms. One of these is a cell membrane that is fairly 
impermeable to protons12. In the Archaea branch of Life, this  
impermeability has been shown via tetraether lipids, differences 
in lipid head-group structures, a bulky isoprenoid core, and the 
fact that its ether linkages are less sensitive to acid hydrolysis  
compared with the ester linkages in the Bacteria and Eukarya 
Domains13. Another mechanism is the reduced pore size  
of membrane channels, which has been shown for Acidithiobacil-
lus ferrooxidans14. Acidophiles also have a net positive potential 
charge inside the cell, which can counteract the high concen-
tration of H+ ions in their surroundings. They also employ  
active proton pumping as has been observed in Bacillus and  
Termoplasma species15. It has not been shown that there is an iden-
tifiable acid response signature in the genomes of acidophiles.  
However, it is interesting to note that the genomes of acidophiles 
are predominately smaller than neutrophiles13. It is currently  
unclear why this should be and whether it confers any evolutionary 
advantage to these organisms.

pH: alkaliphiles
When adaptations are discussed, alkaliphiles are often 
grouped with halophiles, as they are typically found in saline  
environments16. However, the response to high pH is specific 
to these organisms and is worth discussing. The cytoplasm of 
alkaliphiles, like that of acidophiles, is typically near neutral  
pH17; therefore, alkaliphiles also have to overcome an imbal-
ance of H+ ions18. Where acidophiles are “swimming” in H+ ions,  
alkaliphiles are in a relative desert by comparison.

In response to this challenge, alkaliphiles have developed a  
negatively charged cell wall, which lowers the pH of the environ-
ment just outside the cell. They also produce an acidic second-
ary cell wall composed of teichurono-peptide and teichuronic  
acid or polyglutamic acid. These acids attract H+ and repel OH−, 
possibly helping to generate the proton motive force needed to  
drive ATP synthesis. In several alkaliphilic Bacillus species, 
the proton motive force for ATP synthesis is driven by Na+ or  
K+ antiporters that catalyse an electrogenic exchange of outwardly 
moving ions (Na+ or K+) and an increased number of entering  
H+19. More generally, alkaliphiles are able to use these antiport-
ers (Na+/H+ and K+/H+)20 and also produce acids to reduce the  
internal pH when it is too high for metabolism to occur7.

Salinity: halophiles
Organisms that require a saline environment to grow (also 
known as halophiles) can be found along a continuum of salinity.  
These organisms have adopted either a “salt in” or “salt out” 
approach as the main adaptation for their ability to thrive in these 
conditions21.

As suggested by the name, the salt-in approach means that these 
organisms have salinity/ion concentrations (up to 4 or 5 M) that 
are similar both inside and outside the cell membrane. As such, 
the cytosol of these organisms presents a significant challenge 
for the regular biochemistry of life. High-salinity conditions  
typically strip water molecules from proteins, resulting in  
aggregation and precipitation, and often this is due to exposed  
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hydrophobic patches binding to one another. To counteract this, 
these organisms have evolved a proteome that is composed of 
primarily acidic proteins22, and the acidic residues (aspartic and 
glutamic acid) are typically found on the surface of most of their 
proteins. These acidic residues have been shown to coordinate  
water molecules (that is, H+ of water interacts with the COO− of  
the acidic side chain) around the proteins forming a “water  
cage” that protects the proteins from being dehydrated and 
precipitating out of solution23,24. As a result of the large-scale  
evolutionary changes needed for this survival (that is, changes 
to the proteome), these organisms tend to live mainly in  
environments where salinity does not dramatically fluctuate  
frequently. Thus far, only prokaryotes (bacteria and archaea) have 
been shown to adopt this strategy25.

In contrast to salt-in organisms, the salt-out organisms have dif-
fering concentrations of salt/ions inside and outside the cell 
membrane (similar to H+ with acido- and alkaliphiles). This  
strategy is more energy-intensive than the salt-in strategy16, as 
these organisms actively accumulate ions and organic osmolytes 
(for example, glycine betaine, ectoine/5-hydroxyectoine, gluco-
sylglycerol, and dimethylsulfoniopropionate26) to maintain turgor  
pressure. The accumulated compatible solutes eventually can 
be released into the environment via mechanosensitive channels 
or used as an energy source during times of lower external  
salinity25. As the salt-out approach requires fewer large-scale  
evolutionary changes, organisms that have adopted it are able  
to grow over a wider range of salinity.

Radiation: radiophiles
Organisms’ responses to primarily two main types of radiation—
ionizing (gamma) radiation and UV radiation—have been studied. 
Although on the surface it may seem that the same mechanisms 
of adaptation should be involved in both, there are, in fact, quite  
a few differences, which are probably due to the types of  
damage caused by each.

Ionizing radiation is responsible mainly for double-stranded breaks 
in the genome of organisms. However, it has also been shown to 
damage both proteins and lipids and induce persistent oxida-
tive stress27. Therefore, ionizing radioresistant organisms have  
developed all, or a combination of, the following strategies: 
novel and adaptive DNA repair mechanisms, antioxidant and 
enzymatic defense systems, and a condensed nucleoid. Fast and 
accurate repair of genomes is essential in surviving doses of ion-
izing radiation. This has been shown to be accomplished through  
the use of the nucleotide excision repair pathway (uvrA1B), 
base excision repair pathway (ung and mutY), and homologous  
recombination pathway (recA, ruvA, ddrA, and pprA) in  
D. radiodurans28 and single-stranded binding proteins in  
Halobacterium sp. NRC-1 (Rfa-like genes)4 and D. radiodurans  
(DdrB and SSB)29,30. In some especially sensitive species, protein 
damage causes death before double-stranded breaks start to form.  
It has been suggested that, especially for bacterial species, the 
role of protein damage in cell death due to ionizing radiation is  
underestimated. For example, D. radiodurans cells contain  

several oxidative stress prevention and tolerance mechanisms: 
cell cleaning through elimination of oxidized macromolecules,  
selective protection of proteins against oxidative damage, and 
suppression of reactive oxygen species production. A con-
densed nucleoid has also been shown to promote the efficiency/ 
accuracy of DNA repair31 and to limit the diffusion32 of  
radiation-generated DNA fragments.

Unlike ionizing radiation where DNA damage is primarily double- 
stranded breaks, UV radiation damages DNA in more subtle 
ways through the formation of cyclobutene pyrimidine dimers 
(that is, thymine dimers) and pyrimidine (6-4) pyrimidone  
photoproducts (that is, 6-4 photo products). These two types 
of damage account for roughly 80% of photolesions induced by 
UV radiation33. However, cyclobutene pyrimidine dimers are 
far more numerous and typically outnumber pyrimidine (6-4)  
pyrimidone photoproducts 3 to 1. To repair these DNA lesions, 
organisms use a combination of photoreactivation (phr) genes, 
nucleotide excision repair (uvrABCD, xpf, and rad), base exci-
sion repair (mutY and nth), and homologous recombination  
(recA and radA/51)33. Additionally, organisms have evolved a 
suite of photoprotection devices to protect themselves from con-
tinual exposure to UV radiation. These include carotenoids, super-
oxide dismutases and hydroperoxidases, gene duplication via  
polyploidy, and genome composition (that is, reduction in the 
number of bipyrimidine sequences)33. However, as in ionizing  
radiation, reactive oxygen species interference with normal  
metabolic processes is a more typical cause of cell death34.

Pressure: piezophiles
These organisms are typically found in deep lakes such as 
Baikal (1.6 km) and Tanganyika (1.5 km), the ocean, and sub-
surface communities. To have an idea of how much pressure is  
involved, one must remember that hydrostatic pressure increases 
roughly 10.5 kPa per meter depth while lithostatic (overburden) 
pressure increases about 22.6 kPa per meter. This means  
that microbes growing at the bottom of the Mariana Trench  
(10.9 km below the ocean surface) are subjected to 114.4 kPa  
of pressure but that those in the South African gold mines  
(3.5 km below the Earth’s surface) face 79.1 kPa.

With increasing pressures, membranes lose fluidity and perme-
ability as lipids pack more tightly and enter a gel phase similar 
to what happens at cold temperatures. To counteract this, bacte-
rial piezophiles have been shown to incorporate polyunsaturated 
and monounsaturated fatty acids11 or phosphatidylglycerol and  
phosphatidylcholine instead of phosphatidylethanolamine35.  
Little is known about the adaptations in their archaeal counter-
parts, but alterations in the amount of certain archaeols seem to 
be important36. Other mechanisms of adaptation are generally 
not well known, but a few reports suggest that changes are not 
due to a specific group of genes/enzymes but rather are the result 
of an overall change in metabolism37–39 — similar to how the  
salt-in halophiles have evolved an acidic proteome to keep  
proteins soluble and active at high salinities rather than altering  
the expression of a few genes.
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Temperature: psychrophiles
As mentioned above, the Earth and the Universe are both  
predominately cold environments. At first glance, psychrophile  
should be easy to define (that is, as something that grows in 
the cold) and it has often been defined as an organism with an  
optimum temperature of less than 15 °C40. However, this  
definition has multiple problems: it is arbitrary, does not  
account for eukaryotes, and treats cells as mere thermal units41. 
Others have adopted the terms eurypsychrophile and stenopsy-
chrophile to refer to a “broad” or “narrow” range of growth at  
low temperatures42. Still, some believe that the use of these 
terms does not “push” researchers enough to search for “true”  
psychrophiles – those organisms able to grow well below 0 °C. 
As such, there have been attempts to classify psychrophiles as 
those organisms that grow below 5 °C and to introduce the term  
cryophile, defined as organisms that can grow below 0 °C43. 
So, whichever term you prefer, it is important to remember that 
in our efforts to communicate, scientists often impose strict  
restrictions that Nature does not create or recognize.

Psychrophiles have been isolated from a variety of natu-
ral (for example, polar regions, frozen lakes, and winter soils) 
and man-made (for example, refrigerators and cooling vents)  
environments. Microbes are generally subject to the temperature 
of their environment and as a consequence must find ways to  
adapt to the limitation placed on them by temperature.

To compensate for the negative effects of cold temperatures, 
organisms have developed several physiological adaptations,  
including regulating the fluidity of their membranes, synthesiz-
ing temperature-related chaperones, and producing antifreeze  
molecules44. Psychrophiles regulate membrane fluidity through 
an increase in the number of branched-chain or unsaturated fatty 
acids or a shortening of the length of the fatty-acyl chains or  
both. Molecular chaperones are used to aid in the refolding of  
proteins and affect the levels of protein synthesis45. Compatible  
solutes are used as cryoprotectors to lower the freezing point of 
the cytoplasm46 and possibly prevent aggregation/denaturation 
of proteins, stabilize membranes, and scavenge free radicles in  
cold conditions47. To reduce the damage caused by forming 
ice crystals, they may also use antifreeze or ice nucleation  
proteins48,49. Antifreeze proteins act by binding seed ice crystals, 
thereby inhibiting their growth while ice nucleation proteins  
prevent the supercooling of water by ice crystal formation.

Structural proteins are also affected by temperature. Enzymes 
must overcome at least two obstacles in order to maintain activity 
at low temperatures: cold denaturation and slower reaction 
rates. Cold denaturation occurs at low temperatures because  
decreasing temperature results in more ordered water molecules 
surrounding a protein’s surface, which results in their being 
less associated with the protein and pushing the system equi-
librium toward the unfolded state44. The second problem for  
enzymes at low temperatures is slower reaction rates. Accord-
ing to the Boltzmann equation, reaction rates increase with  
increasing temperature and decrease two- to three-fold for every  
10 °C decrease. Therefore, if cold-active enzymes are to have 
activities on par with their mesophilic counterparts, they  
must have developed structural changes to overcome these  
thermodynamic barriers50.

Temperature: thermophiles
All portions of thermophiles, as with psychrophiles, are con-
stantly exposed to temperature; therefore, they have adapted 
all macromolecules (DNA, lipids, and proteins) and complexes  
(cell surface, ribosomes, RNA polymerase, and so on) to remain 
functional. Among the most studied aspects of adaptation for 
thermophiles are those found in proteins. Additional networks of  
hydrogen bonds, decreased length of surface loops, enhanced sec-
ondary structure propensity, higher core hydrophobicity, increased 
van der Waals interactions, ionic interactions, and increased  
packing density have all been shown to contribute to protein 
thermostability22. It was more recently shown that, in addition 
to using the above mechanisms, archaeal cells use a structure- 
stabilization approach (that is, proteins are more compact 
than their mesophilic homologs) but that bacterial cells use 
a sequence-stabilization approach (that is, a small number of 
strong interactions)51. Another well-studied aspect of adapta-
tion is the lipid composition of thermophilic membranes. Certain 
organisms, like Thermatoga maritima, have novel/specific lipids  
(15, 16-dimethyl-30-glycerylox-triacontanedioic acid)11. The 
ether-based lipids of archaea have also been shown to be  
resistant to hydrolysis at high temperatures. These are also found 
in meso- and psychrophiles and so are not a specific thermal  
adaptation.However, some thermophilic archaeal cells do contain 
a monolayer composed of a “fused lipid bi-layer” that has also  
been shown to resist hydrolysis at higher temperatures24.

The DNA of thermophiles also has a thermal resistance in 
that it has positive supertwists added by reverse gyrase52.  
Additionally, an increase in GC base pairs in specific regions  
(stem-loops) has been shown to stabilize DNA. Archaeal  
thermophiles also have histones that are closely related to the  
H2A/B, H3, and H4 core histone of eukaryotes. The binding of 
these histones has been shown to increase the melting temperature 
of DNA53.

Model organisms and major discoveries
Until very recently, a major drag on extremophile research was 
a lack of model organisms. Typically, after isolation, the genes 
of extremophilic organisms would be cloned and transformed 
into well-established model organisms like Escherichia coli.  
This was a necessary step to keep a forward momentum in 
research; however, it was also limiting as it allowed studies tar-
geting only a small number of genes/proteins at a time and not 
the whole organism grown under in situ conditions. It also kept  
researchers from pushing limits as it meant that in-depth stud-
ies would always be relegated to genes/proteins from organ-
isms that could “conform” to being studied in mesophilic model  
systems. Omics experiments have alleviated some of these 
problems; however, they cannot truly replace studies that need 
to be carried out in vivo. For these experiments, true model  
organisms that are extremophiles are needed. Fortunately, there 
are now model organisms for all extremophile groups men-
tioned in this review; they include Leptospirillum ferriphilum  
(acidophile)54,55, Sulfolobus solfataricus (acidophile and  
thermophile)56,57, Natronomonas pharaonis (alkaliphile and  
halophile)58,59, Bacillus halodurans (halophile)60,61, H. volcanii  
(halophile)62,63, Halobacterium sp. NRC-1 (halophile and  
radiophile)64,65, Wallemia ichthyophaga (halophile)66,67,  
D. radiodurans (radiophile)68,69, Thermococcus barophilus  
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(piezophile)70,71, Halorubrum lacusprofundi (halophile and psy-
chrophile)72,73, Pseudoalteromonas haloplanktis (psychrophile)74,75, 
Thermococcus kodakarensis (thermophile)76,77, and Thermus  
thermophilus (thermophile)78,79.

Other than detailed knowledge about the mechanisms that 
allow these organisms to thrive, studies of these model organ-
isms have also led to some significant discoveries. One of these 
was the finding of a novel gene regulation mechanism found in  
Halobacterium sp. NRC-180 that was also shown to exist in other 
archaeal cells with multiple TATA-binding proteins (TBPs) 
or transcription factor B (TFBs) or both81,82. This mechanism  
uses pairs of TBPs and TFBs to express/regulate specific sets of 
genes and is similar to a mechanism found in the Metazoa83,84. 
Another is the primacy of biological function (that is, proteome/
lipidome) over information (that is, genome). Studies performed 
using D. radiodurans showed that cells can function for some 
time after losing their genome (that is, complete fragmentation  
of the genome by gamma irradiation); however, the same is not 
true for a cell that loses its proteome68. Just recently, there were  
reports using T. thermophilus and other organisms suggesting 
that the 16S genes of prokaryotes, once thought to be species- 
specific and so used for decades for phylogenetic analysis, are  
promiscuous and horizontally transferred79.

Biotechnology applications
There have been four great success stories for the application 
of extremophiles and their products: the application of DNA  
polymerases from thermophiles to polymerase chain reaction, 
the use of thermophilic organisms/enzymes to produce biofuels,  
the use of acidophilic and thermophilic organisms/enzymes in  
biomining, and the use of halophilic organisms/enzymes to  
produce carotenoids85. Extremophilic lipases/proteases have also 
been used extensively in detergents, specifically designed for  
cold water washing, and fine chemical synthesis86.

In addition to the current applications, several other possi-
bilities have been suggested over the years. These include using  
cold-active beta-galactosidase to hydrolyze lactose in dairy  
products87 and using thermophilic and alkaliphilic starch- 
hydrolyzing enzymes (for example, alpha-amylase, glucoamy-
lase, and pullulanase) to make a range of products like ethanol 
and high-fructose corn syrup85,88. Additionally, the products of 
extremophiles like sugars (for example, trehalose) and amino acid  
derivatives (for example, ectoine) as stabilizers for antibodies 
and vaccines or as skin care products24,89 have been suggested.  
Several extremophiles produce polyhydroxyalkanoates (PHAs), 

which are a heterogeneous group of polyesters and can be used 
to generate bioplastics90. Finally, several extremophiles have 
been tested and shown to be helpful, at least on a small scale, in  
bioremediation efforts against heavy metals, radioactive isotopes, 
hydrocarbons, and polychlorobiphenyls (PCBs) to name a few91.

Astrobiology and origin-of-life theories
In addition to teaching us about the limits of life on Earth,  
extremophiles can tell us about the limits of life in the Universe. 
We should not expect that life, if found, in other parts of the  
Universe will necessarily be the same as on Earth; however, the 
laws of chemistry and physics we know suggest that life requires 
building blocks (for example, nucleotides and amino acids), an 
energy source (for example, solar radiation or redox reactions),  
and a liquid solvent (for example, water)92. The known limits of 
life on Earth are mentioned in the introduction above; however, 
scientists keep finding exceptions and it is likely that the absolute  
limits, if they exist, have not been discovered. Indeed, the true lim-
its of life are possibly the availability of water, building blocks, 
and an energy source as opposed to a specific temperature, pH,  
and so on93.

Although extremophiles are often discussed by the predomi-
nate environmental pressure, in reality there are typically mul-
tiple extremes (for example, cold and high salinity or heat  
and acid). When considering these environments on Earth and 
other extraplanetary bodies, we must look increasingly toward  
polyextremophiles as the true model organisms for astrobiology94.

At first blush, it might seem that the ever-extending boundary of 
life is a boon to detecting life on extraplanetary bodies. Indeed, 
that is the case but only to a limited extent. It is true that, as  
knowledge expands, we extend the types of places we expect to 
find life. However, one should remember that, with the exception 
of the Oceans, the environments where extremophiles thrive are  
quite far from a planetary mean95. Additionally, organisms may 
be “active” (that is, metabolizing, dividing, and so on) only for 
brief moments in transient environments (for example, seasonal  
rains/water)96. As such, many extraplanetary bodies that could 
support life are likely to be overlooked. It also means that  
“one-off” observations of extraplanetary bodies are highly  
unlikely to find signatures of life.

Abbreviations
TBP, TATA-binding protein; TFB, transcription factor B; UV,  
ultraviolet
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